Помощник

Что относится к нетрадиционным видам ресурсов. Мир без нефти Нетрадиционные источники нефти и газа в мировом энергетическом балансе: некоторые оценки и перспективы. углеводородный газогидрат нефтяной топливо

В современном мире проблем хватает. Несмотря на прогнозы фантастов, люди так и не смогли победить голод, а инфекционные заболевания и по сей день представляют смертельную угрозу для жизни и здоровья живущих на Земле. Но основной бедой является исчерпание ресурсов, которые дают нашей цивилизации энергию. Выходом может стать новый нетрадиционный источник энергии. Что же подразумевается под этим понятием?

Что это такое?

Проще говоря, нетрадиционный источник энергии - это такой способ ее получения, который в промышленных масштабах не используется, является экспериментальным и только готовится к более широкому использованию во всем мире. Но главной отличительной чертой подобных способов получения энергии становится их полная экологическая безопасность и возобновляемость.

К ним могут быть отнесены солнечные батареи, электростанции, работающие от энергии приливов. Кроме того, к тому же классу могут быть отнесены биогазовые установки, а также перспективные проекты термоядерных установок (правда, с большой натяжкой).

Солнечная энергия

Этот нетрадиционный источник энергии только весьма относительно может называться «нетрадиционным». Причина только лишь в том, что в настоящее время технология не слишком развита: сказывается загрязненность атмосферы, да и фотоэлементы до сих пор стоят очень недешево. Космос - иное дело. Солнечные батареи имеются на всех космических кораблях и исправно обеспечивают их оборудование бесплатной энергией.

Не нужно предполагать, будто этот «нетрадиционный» источник энергии привлек внимание людей только в наше время. Солнце - это дармовой источник тепла с древнейших времен. Еще цивилизация Шумера использовала емкости на крышах домов, в которых вода нагревалась жаркими летними днями.

В принципе, с тех пор ситуация изменилась не сильно: эффективно развивают это направление энергетики только в тех странах, где есть пустынные и жаркие районы. Так, большая часть Израиля и Калифорнии в США получает энергию, выработанную посредством солнечных батарей. Преимуществ у этого метода хватает: современные фотоэлементы отличаются повышенным КПД, так что с каждым годом мир сможет вырабатывать все большее количество совершенно чистой и безопасной энергии.

К сожалению, цена технологии (о чем мы уже говорили) до сих пор высока, а при производстве батарей используются столь токсичные элементы, что говорить о какой-то экологии вообще становится бессмысленно. Несколько иначе поступают японцы, широко применяющие нетрадиционные и возобновляемые источники энергии на практике.

Японский опыт

Конечно, солнечные батареи более-менее интенсивно используются и в Японии. Но в последние годы они вернулись к практике с тысячелетней историей: на крышах домов устанавливаются резервуары и трубы черного цвета, вода в которых нагревается солнечными лучами. Учитывая тяжкое положение с энергоносителями в этом островном государстве, экономия средств получается существенной.

На данный момент аналитики считают, что уже к 2025 году солнечная энергия займет социально значимые позиции в большинстве стран мира. Словом, использование нетрадиционных источников энергии в ближайшие 50-70 лет должно стать массовым.

Биогаз

Все крупные людские поселения с незапамятных времен сталкивались с одной общей проблемой - отходами. Целые реки нечистот стали еще больше, когда человек приручил скот и свиней и начал массово его выращивать.

Когда отходов было еще не так много, они могли использоваться для удобрения полей. Но в тот момент, когда поголовье тех же свиней начало исчисляться миллионами, нужно было как-то решать вопрос. Дело в том, что фекалии этого вида животных в свежем виде попросту токсичны для растений. Чтобы сделать их полезными, нужно выдерживать навозную жижу, аэрировать ее и частично использовать препараты для стабилизации уровня рН. Это очень дорого.

Биогаз - это древнейший тренд!

Ученые достаточно быстро обратили внимание на опыт Древнего Китая и Индии, где еще до нашей эры люди начали использовать метан, полученный при перегнивании домашних отходов. Тогда его использовали чаще всего для приготовления пищи.

Потери газа были очень большими, но для упрощения домашней работы его хватало. Кстати говоря, в этих странах подобные решения активно используют и по сей день. Таким образом, биогаз как нетрадиционный источник энергии имеет большие перспективы, если подойти к вопросу с использованием современных технологий.

Была предложена технология переработки стоков животноводческих предприятий, в результате которой на выходе получался чистый метан. Проблема ее развития в том, что создавать подобные предприятия можно только в регионах с развитым животноводством. Кроме того, перспективы увеличения добычи биогаза тем ниже, чем больше на сельскохозяйственных предприятиях используется антибиотиков и моющих средств: даже небольшое их количество тормозит брожение, в результате чего весь навоз покрывается плесенью.

Ветряные генераторы

Помните Дон Кихота с его «великанами»? Идея использования издавна будоражила умы ученых, а потому очень скоро они нашли выход: стали исправно обеспечивать быстро растущее городское население первоклассной мукой.

Разумеется, когда появились первые генераторы электрического тока, умами ученых вновь завладела та же идея. Как же не захотеть использовать безграничную силу ветра для получения бесплатного тока?

Идея эта достаточно быстро была а потому в Японии, Дании, Ирландии и США сейчас немало районов, снабжение которых электричеством на 80 и более процентов осуществляется путем применения ветряков. В США и Израиле сегодня уже есть не один десяток фирм, которые разрабатывают и ставят ветряные генераторы - это весьма перспективный нетрадиционный источник энергии. Определение «нетрадиционный» здесь не слишком уместно, так как ветряная энергия имеет давнюю историю.

Проблем в их случае также хватает. Конечно, электричество получается бесплатным, но для установки ветряка опять-таки нужна пустынная местность, где большую часть года дует ветер. Кроме того, стоимость изготовления и установки мощного генератора (с высотой мачты несколько десятков метров) исчисляется десятками тысяч долларов. А потому позволить себе «бесплатное» электричество могут далеко не все страны, в которых сама возможность генерации тока силой ветра вполне реальна.

Термоядерная энергия

Это предел мечтаний многих современных физиков. Работа по обузданию термоядерной реакции начались еще в 50-х годах прошлого века, но до сих пор действующий реактор так и не был получен. Впрочем, новости с этих фронтов достаточно оптимистичные: ученые предполагают, что в следующие 20-30 лет они все-таки смогут создать действующий прототип.

Кстати, а почему это направление науки так важно? Дело в том, что при слиянии двух атомов водорода или гелия образуется в сотни тысяч раз больше энергии, чем если бы распалось несколько тысяч ядер урана! Запасы трансурановых элементов велики, но они постепенно истощаются. Если же использовать для выработки энергии водород, его запасов только на нашей планете хватит на сотни тысяч лет.

Представьте себе компактный реактор, который без дозаправки может работать несколько десятков лет, полностью обеспечивая электричеством огромную инопланетную базу! Термоядерный нетрадиционный источник энергии - это практический шанс для всего человечества, дающий возможность начать широкое освоение Космоса.

К сожалению, недостатков у технологии очень много. Во-первых, до сих пор нет ни одного мало-мальски рабочего прототипа, а прорывы в этом направлении были очень и очень давно. С тех пор мало слышно о каких-то реальных успехах.

Во-вторых, при слиянии легких ядер образуется огромное количество легких нейтронов. Даже грубые расчеты показывают, что элементы реактора всего за пять лет станут настолько радиоактивными, что их материалы начнут разрушаться, полностью дегенерировав. Словом, технология эта крайне несовершенна, а ее перспективы все еще туманны. Впрочем, даже если верны хотя бы грубые подсчеты, то данный нетрадиционный альтернативный источник энергии наверняка может стать настоящим спасением для всей нашей цивилизации.

Приливные станции

В мифах и преданиях народов мира можно найти массу упоминаний о тех божественных силах, которые руководят приливами и отливами. Человеку внушала трепет исполинская сила, которая может приводить в движение такие массы воды.

Разумеется, с развитием промышленности люди вновь обратили взгляды на приливную энергию, которая позволяла создать электростанции, во многом повторяющие идеи уже давно опробованных и прекрасно зарекомендовавших себя ГЭС. Преимущества - дешевая энергия, полное отсутствие вредных отходов и необходимости затопления земель, как в случае с гидроэлектростанциями. Недостаток - дороговизна строительства.

Выводы

В итоге, можно сказать, что нетрадиционные возобновляемые источники энергии могут примерно на 70% обеспечить человечество недорогим и чистым электричеством, но для их массового использования нужно удешевлять технологии.

Разведка

Изучение сложных разнородных свойств.
Нетрадиционные поисково-разведочные объекты, особенно сланцевые, часто имеют сложные и в значительной степени изменчивые свойства, что сильно усложняет выбор наиболее перспективных объектов для бурения и оценку количества и качества запасов. Чтобы понять все особенности объекта, специалистам необходимо интегрировать все доступные поверхностные данные и данные о геологической среде. Используя среду DecisionSpace®, объектовые группы могут накапливать и совместно использовать данные ГИС, геологические, геофизические и технические данные для определения характеристик и оценки потенциальных объектов. С помощью технологии Dynamic Frameworks to Fill™ специалисты могут создавать и обновлять замкнутые структурные модели для оценивания объектов.

Выявление потенциальных рисков.
Неправильное определение ключевых сейсмических атрибутов и параметров добычи на этапе разведочных работ могут повлечь за собой аварии на более поздних этапах разработки нетрадиционных месторождений. Интегрированная среда DecisionSpace от Landmark помогает объектовым группам собирать и совместно использовать точные сейсмические и каротажные данные по сланцевым интервалам, неоднородности фаций, разломам и картам тектонической структуры и систем осадконакопления в масштабе бассейна. Инструменты для сейсмической инверсии и анализа до и после суммирования позволяют быстро и более точно оценивать сейсмические атрибуты, экономя время и снижая возможные риски для газа, конденсатов или жидкостей в залежи.

Оценка и разработка

Коллегиально разрабатывайте детальные планы эксплуатации месторождений. Для обеспечения продуктивности и прибыльности залежей с низкой проницаемостью, например, содержащих сланцевый и угольный метан, могут потребоваться планы разработки с несколькими тысячами скважин. Поскольку каждая такая скважина стоит существенно больше обычной скважины, перед началом разработки месторождения объектовым группам необходимо определить перспективность объекта и оптимизировать расположение кустов скважин. ПО Landmark позволяет объектовым группам быстро переходить от детальных моделей среды к точным и эффективным траекториям скважин, используя инструменты для совместного моделирования, измерения и оптимизации объекта. Интегрированное планирование в реальном времени позволяет обновлять планы по мере продвижения работ, а автоматизированное планирование на основе сценариев позволяет вашим специалистам быстро и точно составлять планы для больших иесторождений.

Оставайтесь в зоне максимального нефтегазонасыщения.
Залежи с угольным метаном, сланцевым газом и плотными песчаниками имеют зону максимального нефтегазонасыщения меньшую, чем у традиционных нефтяных залежей, и в этом случае для оптимальной проводки скважин требуется точная и адаптивная геонавигация. В ходе выполнения проводки специалистам необходимо быстро интегрировать в процесс планирования траектории скважины микросейсмические данные и другие геофизические и петрофизические данные. Приложение для геонавигации от Landmark использует данные в реальном времени, включая данные каротажа в ходе бурении (LWD), чтобы более точно определять траектории скважин и динамически обновлять карты целевых объектов.

Управление неопределенностями.
Поскольку разработка нетрадиционных залежей обходится гораздо дороже по сравнению с разработкой обычных залежей, то для обеспечения безопасной и прибыльной разведки и добычи важно оценить все возможные сценарии разработки месторождения. Специалисты могут воспользоваться ПО DecisionSpace® Well Planning и DecisionSpace Earth Modeling, чтобы подготовить альтернативные сценарии и соответствующие планы скважин для всего месторождения. Это позволит оценить все возможные варианты развития событий перед началом бурения. Буровики могут использовать платформу DecisionSpace InSite® для оперативной оптимизации плана бурения с использованием данных бурения в реальном времени.

Разработка и добыча
Добывайте больше углеводородов за меньшее время эксплуатации скважины. Специалистам очень важно оптимизировать время добычи и использовать получаемый опыт для будущих скважин, поскольку нетрадиционные месторождения имеют гораздо более короткий период эксплуатации скважин. Среда DecisionSpace® позволяет объектовым группам строить кроссплоты всех атрибутов по зонам и определять влияющие на добычу диагностические факторы, включая размещение и интервал между скважинами, трещиноватость, методы ГРП и заканчивания. Инструменты управления отчетами о скважинах позволяют выделить недостаточно продуктивные скважины на основе выбранных вами критериев, помогая специалистам сфокусироваться на более продуктивных скважинах и снижая потери времени.

Контролируйте большее количество скважин.
В отличие от традиционных месторождений, для эффективной добычи на сланцевых месторождениях требуются сотни правильно расположенных на большой площади скважин. Для эффективного отслеживания добычи из каждой скважины объектовым группам требуется автоматизированное решение. Мощные современные многоскважинные технологии планирования от Landmark оперативно используют геофизические данные, помогая выполнять проводку каждой скважины, быстрее анализировать исторические данные месторождения и принимать более точные решения.

Управление разнородной базой данных.
Нетрадиционные месторождения имеют сложную природу, что приводит к получению огромного количества данных, содержащихся в различных хранилищах. Эти данные имеют различное качество, и для их обработки отсутствует общая технология. Наше корпоративное решение по управлению данными OpenWorks® позволяет извлечь максимум информации из ваших данных. ПО OpenWorks является единственным в отрасли репозиторием на основе бизнес-правил, который объединяет данные в единую базу, динамически используемую одновременно несколькими группами и проектами. Это решение уменьшает количество наборов данных, которыми нужно управлять, синхронизировать и поддерживать, что позволит вам избавиться от дублирования данных, улучшить совместную работу над проектами и обмен информацией для оптимизации будущих проектов.

Ресурсами называется все то, что используется для достижения каких-либо целей. Их задачей является удовлетворение потребностей субъектов среды.

Классификация по направленности

На сегодняшний день различают следующие виды ресурсов:

Более общими понятиями являются экономические, информационные и производственные ресурсы.

Классификация по типам

Относительно этого критерия принято различать такие виды ресурсов, как и воспроизводимые, и нет. К первому типу относят все накапливаемые и складируемые объекты. К невоспроизводимым причисляют все остальные. В естественной природе аналогом классификации будет исчерпаемость ресурсов. Также к типовому критерию относят такие свойства объекта, как заменимость, степень потребления и происхождение.

Воспроизводимые ресурсы во время работы сохраняют свою форму и могут использоваться для прочих целей (на следующих этапах). В случае долгого простоя их степень полезности утрачивается и впоследствии не компенсируется. Именно поэтому такие ресурсы называются «мощностью». К ним относят людей, механизмы и условия труда (станки, машины).

Невоспроизводимые ресурсы по окончании работы полностью или частично расходуются. При этом не допускается возможность повторного использования. У такого типа ресурсов нет срока давности. Они могут использоваться как в текущий момент времени, так и в далеком будущем. Главным свойством этого типа ресурсов является постепенный расход запаса, то есть отсутствие способности к накоплению. Такие ресурсы относят к типу «энергия». Примером могут служить предметы труда, топливо, финансы.

Разновидности ресурсов: финансовые

В экономической теории можно выделить две основные группы источника глобального потенциала. К первой относят материальные виды ресурсов, а ко второй - человеческие. На сегодняшний день существует огромное множество различных комбинаций производственных факторов. В материальные ресурсы входят земля и капитал, в человеческие - предпринимательская и трудовая способности. Все эти факторы направлены на производство товаров и обеспечение услуг.

Главными ресурсами мировой экономики считаются именно финансовые. К ним можно отнести и денежные средства, и ценные бумаги, и дебиторские задолженности, и различные вложения, и прочие операции с капиталом. Особенность этих ресурсов в том, что они считаются неисчерпаемыми, то есть не могут быть полностью потреблены или использованы. В свою очередь, многие из них являются накопляемыми.

Создание финансовых ресурсов необходимо для взаимодействия внешней и внутренней среды. Они представляют собой отдельный тип коммуникации людей и организаций.

Разновидности ресурсов: производственные

К этому типу относят не только различные материалы, готовую продукцию и услуги, но и всевозможные вариации работы. Производственные виды ресурсов имеют одну общую особенность - потребляемость. Все плоды деятельности человека и машины могут быть использованы полностью или частично, но в любом случае они пользуются спросом.

Основным аспектом производственных ресурсов является рентабельность. Иными словами, насколько степень затратности будет соответствовать конечному результату (продукция, услуги). По данному критерию ресурсы могут быть прибыльными, умеренными, убыточными.

За успешность производства отвечают умственные и физические способности работников. Обе характеристики объединяют в трудовые ресурсы. Именно они играют важнейшую роль в осуществлении оптимальной производственной деятельности. В свою очередь, этот вид ресурсов ограничивается трудоспособными возрастными критерием. В России у мужчин он будет включительно от 16 до 59 лет, а у женщин - от 16 до 54. В некоторых странах работать можно уже с 14 лет и выходить на пенсию к 65 годам.

Разновидности ресурсов: природные

Материалы этого типа используются для различных нужд, производства благ. Природные ресурсы - это совокупность предметов и веществ, находящихся на определенной территории планеты. Это и реки, и озера, и моря, и горы, и животные, и растения. Из подвидов выделяют водные, грунтовые и лесные ресурсы.

В земной коре содержится огромное множество полезных веществ, которые необходимы для комфортного проживания человека. Поэтому именно она считается главным источником природных ресурсов. В ней находятся сотни полезных ископаемых, пригодных для прямого использования или переработки. Например, глина, песок, гранит и прочие материалы незаменимы в строительстве.

По происхождению ресурсы бывают органические и нет. К первой группе относят нефть, уголь, газ, химические элементы. Их добывают как на поверхности, так и на высокой глубине. К неорганическим относят горные породы (камень, руду и т. д.).

Стоит отметить, что все полезные ископаемые в конечном счете являются исчерпаемыми, в том числе водные и лесные ресурсы. Из жизненно важных природных продуктов потребления следует выделить солнце и воздух. Они вкупе с водой являются незаменимыми ресурсами для всего живого на планете. Это касается и фауны, и флоры.

Разновидности ресурсов: электронные

К таковым, в первую очередь, относят цифровые данные. По сути, электронные ресурсы представляют собой все виды информации на соответствующих носителях (жесткий или гибкий диск, флэшка и т. д.). Это глобальная база данных, которая состоит из фильмографии, различных сборников, документов, изданий и проч.

Электронный каталог имеет безграничные возможности. Сегодня цифровые ресурсы занимают первое место среди источников информации. К ним относят электронные библиотеки, энциклопедии, книги, журналы и прочие публикации. Документы представлены в цифровом виде, причем формат может быть различным. То же касается и вариативности языков: русский, английский и любые другие.

Среди пользователей электронных ресурсов могут быть как читатели научных публикаций, так и простые обыватели, включая детей. Цифровые данные делятся на категории в зависимости от направленности: экспертные, специализированные, художественные, социальные, политические и т. д.

Плюс электронной информации в том, что ее можно без труда хранить, сортировать, распечатывать, искать.

Разновидности ресурсов: Интернет

Под эту категорию подходят любые точки Глобальной сети, называемые веб-сайтами. Интернет-ресурсы представляют собой набор страниц, которые размещены во всемирной системе Internet. Они могут быть текстовые, графические, мультимедийные. К первому виду относятся различные документы, напечатанные на клавиатуре, ко второму - картинки, презентации и прочее, к третьему - видеоматериалы, музыка и т. п.

В свою очередь, интернет-сайты бывают статичными и динамичными. Первые основаны на среде программирования HTML, а вторые - на специальных скриптах. Каждый подобный интернет-ресурс хранится на выделенном хостингом сервере. Адрес сайта представляет собой его доменное имя в Глобальной сети.

Самым популярным источником интернет-ресурсов является Всемирная паутина, сокращенно - WWW. На втором месте идет FTP-хранилище со встроенной системой пересылок на файлы. Из прочих стоит выделить E-mail и чат.

Разновидности ресурсов: образовательные

К таковым относят учебные материалы (пособия, конспекты, презентации, доклады и проч.). Образовательные ресурсы могут быть печатными и электронными. В современном мире больший приоритет отдается именно цифровым материалам, хотя в учебных заведениях все еще используются полиграфические издания.

Электронные образовательные ресурсы хранятся на всевозможных носителях: от дискеты до Интернет-облака. Они бывают текстового, графического и мультимедийного формата. Доказано, что для обучения и усвоения информации лучше всего подходят аудио- и видеоматериалы, а также различные презентации. С другой стороны, для здоровья человека полезнее будут именно печатные издания.

Явления и объекты, созданные естественным путем, регулярно употребляемые людьми для улучшения качества уровня существования, и формирования материальных благ, а также создающих условия для жизнедеятельности человеческого сообщества называются природными ресурсами .

Существующие виды природных ресурсов систематизируются на:

  1. Исчерпывающие.
  2. Восстановительные (почвенные, водные, биологические, рекреационные ресурсы).
  3. Не возобновляемые (минеральные, технические, химические и т.д.).
  4. Неисчерпаемые (энергия отливов, приливов, Солнца, ветра и т.д.).

Сформирована по основополагающим качествам:

  • источникам происхождения;
  • применению в производстве;
  • степени истощаемости.

В связи с тем, что ресурсы имеют большое влияние на экономику , а также с учетом их природного происхождения, была разработана соответствующая систематизация.

  1. Природная (генетическая) - которая включает в себя весь запас ресурсов природы, включая полезные ископаемые; почву, воду, леса; энергетические резервы. Объединив растительные и животные ресурсы, получим еще один термин - «биологические ресурсы» .
  2. Экологическая - в основу, которой вошли свойства исчерпаемости и возобновимости ресурсов.

Если рассматривать классификацию в направлении охраняемой природной области, то определенная значимость будет при разделении по направлению уровня их истощения. Согласно экологической позиции, истощаемость естественных ресурсов является несогласованностью, регламентирующим баланс между изъятием из почвы земли природных ресурсов к потребностям общества.

При подсчете запаса ресурсов, с учетом того объема, который может быть изъят для пользования, пользуются понятием «исчерпаемости» . По такой характеристике ресурсы могут быть:

  1. Неисчерпаемые. Постоянное потребление человеком такого вида ресурсов не приводит к значительному уменьшению их запаса ни в настоящем, ни в будущем. Например, солнечная энергия, силы природы - ветер, прилив, отлив и т.д.
  2. Исчерпаемые. Запасы, имеющие ограничения к количественному потреблению. Однако некоторые из таких ресурсов способны к восстановлению в случае наличия естественных путей или при человеческой поддержке.
  3. Почерпаемые невозобновимые. Постоянное потребление человеком такого вида ресурсов несет возможность снижения их запаса до того уровня, когда невозможно их дальнейшей использование, так как это процесс станет нецелесообразным под углом обзора экономического подхода. Ко всему, эти ресурсы не могут восстанавливаться в период, пропорциональный сроку использования (минеральные ресурсы).
  4. Почерпаемые возобновимые. Характеризуются такие ресурсы способностью к восстановлению, используя способ размножения. Однако этот процесс достаточно длительный. К такой группе следует соотнести флору, фауну, ресурсы воды.


Хозяйственная систематизация ресурсов

Такая групповая классификация ресурсов сформирована под углом вероятного хозяйственного применения . Существующий порядок распределения предполагает группы, ориентированные на применение с точки зрения технического потенциала (реальные, потенциальные) и рационально-экономического потребления (заменимые, незаменимые).

Систематизация ресурсов под углом геологического изучения

В поддержании экономики страны в допустимой степени немаловажным фактором будет факт наличия природных ресурсов. Значительная роль в жизнедеятельности человека отведена такому ресурсу, как минеральное сырье .

Минерально-сырьевые запасы по степени геологических исследований классифицируются по категориям - А, В, С1, С2. Разбиение по группам прямо пропорционально степени снижения детализации изученности к точности определения территориального расположения месторождения.

Кроме этого, по уровню экономической значимости полезные ископаемые подразделяются на:

  • балансовые (предполагают рациональность эксплуатации);
  • забалансовые (предполагают отсутствие рациональности эксплуатации по разным причинам).

Разделение природных ресурсов с учетом особенности, которая отображает существенность в области экономики и хозяйствования, нередко применяется классификация по направлению и видам хозяйственного потребления . В основу такой систематики положен критерий соотнесения ресурсов к разным областям материального производства или непроизводственной сферы. Согласно таким свойствам, существует естественное разделение природных ресурсов - промышленного и сельскохозяйственного потребления .

Объединение ресурсов в направлении промышленного потребления включает в себя всевозможные категории природного сырья, которые применяются в промышленности. Что же касается области непроизводственного характера, то к таким ресурсам можно соотнести те запасы, которые берутся из окружающего мира, с территории заповедников.

Другие виды классификаций

Сегодня можно выделить еще одну классификационную систему ресурсов, сформированную по принципу источников происхождения :

  1. Биологические ресурсы.
  2. Минеральные ресурсы.
  3. Энергетические ресурсы.

К понятию «биологические ресурсы» относятся все живые клетки биосферы, способные создавать среду обитания. Сюда входят растения, животные, микроорганизмы, в которых заключен генетический материал.

К понятию «минеральные ресурсы» относятся все элементы литосферы, которые могут быть применимы в хозяйственном пользовании, как минеральное сырье или источники энергии.

К понятию «энергетические ресурсы» относятся солнечная и космическая энергии, а также атомные, топливные и термальные источники энергий.

Подводя итог, напрашивается логичный вывод, что человечество имеет доступ почти ко всем ресурсам, предоставленным природой, включая также, ресурсы климатического и космического происхождения, ресурсы Мирового океана, материков. Однако обществу следует задуматься о росте потребительского спроса, который не учитывает такое понятие, как «ресурсообеспеченность».

Ресурсы УВ в недрах огромны, но лишь малая их часть, относимая к традиционным, изучается. За пределами исследований, поиска и освоения остается резерв ресурсов нетрадиционного УВ сырья, по объему на 2-3 порядка превышающий традиционный, но все еще мало изученный. Так, ресурсы метана в гидратном состоянии, рассеянного только в донных отложениях Мирового Океана и шельфов на два порядка (в нефтяном эквиваленте) превышают традиционные ресурсы УВ. Около 8-10 4 млрд. т н. э. метана содержатся в водорастворенных газах подземной гидросферы, причем только в зоне учета ресурсов УВ - до глубин 7 км. Огромны объемы практически разведанных ресурсов нефтяных песков - до 800 млрд. т н. э. в отдельных регионах мира - Канада, Венесуэла, США и другие .

В отличие от подвижной в недрах, традиционной части ресурсов нефти и газа, извлекаемых современными технологиями, нетрадиционные ресурсы плохо подвижны или неподвижны в пластовых условиях недр. Для их освоения нужны новые технологии и технические средства, увеличивающие себестоимость их поиска, добычи, транспорта, переработки и утилизации. Не все виды нетрадиционного сырья ныне технологически и экономически доступны к промышленному освоению, но в энергодефицитных регионах, а также в бассейнах с истощенными добычей запасами и развитой инфраструктурой отдельные виды нетрадиционного сырья могут стать основой современного эффективного топливно-энергетического обеспечения.

Основной прирост традиционных запасов нефти и газа в мире и, особенно, в России идет ныне на территориях с экстремальными условиями освоения - Арктика, шельфы, удаленные от потребителей географо-климатически неблагоприятные регионы и другое. Затраты на их освоение столь велики, что, в период перехода на новые сырьевые базы, освоение нетрадиционных резервов сырья, окажется не только неизбежным, но и конкурентноспособным .

Важность всестороннего и своевременного изучения нетрадиционных ресурсов УВ особенно очевидна, если учесть, что более половины всех учтенных, в качестве традиционных, запасов нефти в России, представлены их нетрадиционными видами и источниками. Следовательно, нельзя считать корректным тот уровень обеспеченности запасами нефтедобычи в России, который ныне рассматривается на основе суммы традиционных и нетрадиционных запасов, поскольку значительные их объемы не отвечают условиям рентабельного освоения.

Любая нефтегазоносная провинция в ходе освоения подходит к стадии истощения. Своевременная подготовка к разработке дополнительных резервов в виде нетрадиционных источников УВ позволит длительное время поддерживать уровень добычи с рентабельными экономическими показателями. В настоящее время степень выработанности большинства крупных разрабатываемых месторождений в России, в основном, превышает 60% и, примерно 43% общей добычи осуществляется из крупных месторождений со степенью выработанности 60-95%. Современная добыча нефти в России ведется в регионах с высокой степенью истощения запасов. Переход на освоение новых сырьевых баз в арктических и восточных акваториях, требует резерва времени и сверхнормативных капитальных затрат, к которым экономика России ныне не готова. Одновременно во всех НГБ, даже с глубоко истощенными запасами, имеются значительные резервы нетрадиционных ресурсов УВ, рациональное и своевременное освоение которых позволит поддержать уровень добычи. Достигнутый в мире прогресс в технологиях добычи нефтегазового сырья допускает освоение нетрадиционных видов и источников УВ, со стоимостью эквивалентной стоимости сырья на мировом рынке .

Исследования ВНИГРИ показали значительные резервы ресурсов нефти и газа в нетрадиционных ис­точниках и резервуарах. Их изучение и освоение позволит заполнить ту неизбежную паузу в обеспечении нефте-, а затем и газодобычи, которая неизбежно возникнет до ввода в освоение новых сырьевых баз в экстре­мальных по условиям освоения регионах. .

В настоящее время первоочередными для освоения нам представляются следующие виды и источники нетрадиционного углеводородного сырья:

1. Тяжелые нефти;

2.Горючие «черные» сланцы;

3.Низкопроницаемые продуктивные коллекторы и сложные нетрадиционные резервуары;

4. Газы угольных бассейнов

Тяжелые (ρ>0,904 г/см 3 ) вязкие и высоковязкие ( >30 мПа-с) нефти занимают особое место среди нетрадиционных источников УВ. Скопления их наиболее хорошо изучены методами нефтегазовой геологии вплоть до эксплуатационного бурения и промышленной разработки, а запасы во многих залежах оценены по высоким (A+B+C 1) категориям. Промышленные запасы тяжелых нефтей (ТН), достигающие в сумме нескольких млрд. т, выявлены во всех основных НГП Российской Федерации с падающей добычей нефти - Тимано-Печорской (16,6% от общих запасов), Волго-Уральской (26%) и Западно-Сибирской (54%). Значительные запасы (3%) имеются также в районах Северного Предкавказья и Сахалина. Существенны и общие ресурсы (запасы + прогнозные ресурсы) ТН в этих регионах, достигающие нескольких десятков млрд. т. .

Всего в России в настоящее время открыто 480 месторождений ТН, из которых по величине запасов 1 уникальное (Русское в Западной Сибири), 5 крупнейших, 4 крупных, остальные - средние и мелкие.

Месторождения расположены в широком диапазоне глубин - от 180 до 3900 м. Температура в их пределах составляет 6-65°С, пластовое давление - 1,1-35 МПа. Большинство месторождений приурочено к антиклинальным структурам. Как правило, они многопластовые. Высота залежей - от нескольких метров до первых сотен метров.

Как и для обычных нефтей, характерна высокая степень концентрации запасов в крупных и крупнейших месторождениях. В них, в Западно-Сибирской НГП сосредоточено 90,5% запасов ТН этой провинции, Тимано-Печорской -70,5%. Волго-Уральской - 31,9%, в Северном Предкавказье - 52%, на Сахалине - 38%. Подобная закономерность характерна и для всей РФ - 72%. Основные запасы ТН сосредоточены на глубинах менее 1,5 км в 1-2 залежах крупных и крупнейших месторождений. Подобная асимметрия вызвана развитием исключительно терригенных коллекторов в Западной Сибири и Сахалинской области. В остальных НГП коллекторы - терригенные и карбонатные, и запасы распределены в них примерно поровну.

В фазовом отношении большинство залежей ТН являются чисто нефтяными. Исключение представляет Западная Сибирь, где почти все залежи (около 90% запасов) относятся к категории нефтегазовых или газовых с нефтяной оторочкой. В газе наиболее погруженных залежей отмечается присутствие конденсата, в то время как газ менее глубоких залежей преимущественно метановый "сухой".

Степень освоения месторождений ТН наиболее высокая в Краснодарском крае и Сахалинской области, где накопленная добыча ТН составляет 66-72% извлекаемых запасов. Соответственно, накопленная добыча по месторождениям Волго-Уральской НГП - 22%, Тимано-Печорской НГП - 15%, Западно-Сибирской НГП - 3%. Максимальная освоенность отмечается в тех регионах, где больше всего выработаны запасы легких и менее вязких нефтей .

Качество запасов ТН в целом таково, что они могут эффективно осваиваться при современном уровне технологий их добычи .

В первую очередь это относится к относительно легким нефтям с плотностью до 0,934 г/см и вязкостью до 30-50 мПа-с. Но не менее перспективны и более тяжелые и вязкие нефти.

Экономический эффект использования ТН будет определяться не только стоимостью освоения месторождений, добычи и транспортировки нефти, но и качеством самих нефтей и глубиной их промышленной переработки, в том числе переработки на месте получения. Чем глубже переработка, тем шире спектр получаемых продуктов и меньше величина отходов, используемых обычно как котельное топливо. ТН - комплексное полезное ископаемое. Только из этих нефтей получают продукты со специфическими свойствами, такие, как различные высококачественные масла и как нефтяной кокс, используемый в цветной металлургии и атомной промышленности, а также сырье для нефтехимических производств. Из них возможно извлечение в промышленных масштабах ванадия, никеля и других металлов. И все это при том, что из ТН может быть получен весь набор продуктов, ти­пичных для обычных нефтей .

Сланцы - источник горючего газа. В 2009 г. США вышли на первое место в мире по объёму добываемого и продаваемого газа. Заокеанское «голубое топливо» в столь крупных объемах стали получать из сланцев путем глубокой и высокотехнологичной их переработки.

Американский «сланцевый прорыв» достоин внимательного рассмотрения. По данным министерства энергетики США, в январе – октябре 2009 г. производство газа увеличилось в штатах на 3,9% по сравнению с тем же периодом 2008 г. – до 18,3 трлн кубических футов (519 млрд м 3). Минэнерго РФ оценивает всю российскую добычу природного газа за тот же период в объеме 462 млрд м 3 . По предварительным подсчетам, за весь прошлый год США произвели 624 млрд м 3 . В России объем добычи сократился до 582,3 млрд м 3 (в 2008 г. было добыто 644,9 млрд м 3).

Возврат к ранее апробированному, но признанному «неэффективным» способу выработки газа из сланцев говорит о том, что в США появились новые технологии. В 2008 г. добыча газа из сланца дала лишь 10% всей американской газодобычи, еще 50% дали другие нетрадиционные источники топлива. Через год сланец дал едва ли не больше «голубого топлива», чем весь «Газпром» /СПбВ, 02.02.2010./.

«Газовые инновации» дают возможность по-новому построить газовый рынок мира. Сейчас природный газ транспортируется по трубам, т.е. продается только тем покупателям, к которым подведена «труба». Никакой биржевой торговли газом в крупных объёмах сейчас нет.

Если какая-нибудь крупная и технологически развитая страна научится делать «голубое топливо» в отрыве от газовых месторождений и вместо трубопроводов инвестирует средства в производство сжиженного газа, то рынок этого сырья станет таким же, как и нефтяной. Цены будут рыночными!

В России на все это смотрят пока «из далека». Технологическое отставание в сырьевых отраслях может Федерации дорого обойтись. Нельзя делать ставку только на газовые ресурсы месторождений Западной Сибири и континентального шельфа арктических и дальневосточных морей.

Опыт получения энергетического сырья из нетрадиционных источников в России есть. Сланцевый газ научились синтезировать уже давно и в 1950 г. в Ленинград шло «голубое топливо» из эстонского месторождения в Кохтла-Ярви. В РФ ресурсы и запасы горючих сланцев достаточно велики. Только в Ленинградской области разведанные запасы сланцев составляют более 1 млрд т. Крупным источником получения «голубого топлива» является газ растворенный в нефти. Недавно компания «Сургутнефтегаз» начала разработку Западно-Сахалинского месторождения, находящегося почти в 100 км от Ханты-Мансийска. Основной проблемой этого месторождения являлась утилизация нефтяного попутного газа, которая успешно была решена в 2009 г., когда построили газопоршневую электрическую станцию. «Сургутнефтегаз» утилизирует 95% попутного нефтяного газа.

Таким образом, весьма актуальным является практическое использование нетрадиционных источников энергетического сырья и в первую очередь получение горючего газа.

Нетрадиционные резервуары ( HP ) нефти и газа это изолированные эффективные ёмкости, размещение которых независимо от современной пликативной структуры .

В качестве примера приведем одну из самых крупных газоконденсатных залежей в Западной Сибири в берриасской линзе Ачз-4 (более 700 млрд.м 3 газа и 200 млн.т конденсата) к востоку от Уренгойского ГКМ, которая расположена в нижней, самой крутой части протяженного склона. Залежь контролируется не только песчаным телом, которое занимает в несколько раз большую площадь, а так же эффективным резервуаром внутри нее. Этот и другие недалеко расположенные резервуары сохраняются потому, что служат путями импульсных перетоков УВ из нижнего НГК в верхний через региональный флюидоупор, что хорошо видно по распределению пластовых давлений. В сводовой части Уренгойского месторождения, где перетоков нет, коэффициенты аномальности пластового давления достигают 1,9 и более, а в зоне разгрузки падают до 1,6-1,7, что и позволяет ее трассировать. Особенно интенсивными эти перетоки стали на поздних этапах развития, когда начал бурно расти Нижнепурский мегавал, и именно благодаря мощной однонаправленной разгрузке сформировалась уникальная сеноманская газовая залежь .

Со спецификой образования связан состав залежей в нетрадиционном берриасском резервуаре - из исходного газоконденсата газ легче проходит через флюидоупор, и в аккумулируемом флюиде постепенно растет конденсатный фактор (до 600 см3/м 3), а затем нередко обособляются и нефтяные оторочки.

Важно еще подчеркнуть, что в Западной Сибири, в Тимано-Печорской и Волго-Уральской НГП, в Предкавказье основная масса НР находится на глубинах 3-4 км, слабо освещенных бурением даже в старых нефтегазодобывающих районах. Относительно лучшая изученность нетрадиционных резервуаров в Лено-Тунгусской провинции объясняется тем, что во-первых, других резервуаров в ней просто нет, а во-вторых, их глубины значительно меньше из-за интенсивных поздних воздыманий, достигающих даже в богатейших районах Непско-Ботуобинской антеклизы 1-1,5 км.

Энергетические процессы в резервуарах и их морфология, параметры вмещающих залежи коллекторов, примеры объектов, а также выраженные в процентах доли прогнозных ресурсов в разнотипных резервуарах и для каждого типа - степень их разведанности, нигде не превышающая 15%.

Резервуары консервации (55% всех прогнозных ресурсов). Отнюдь не самый изученный, но, пожалуй, самый наглядный пример - Бованенковское месторождение на Ямале. В сеноманском веке здесь существовали три палеоподнятия, расположенные в форме треугольника, на тот период времени бывшие наиболее крупными месторождениями с залежами в юрских песчаниках. Затем в центре тре­угольника стала расти гигантская антиклиналь, распрямившая практически все три бывшие антиклинальные складки. Новая антиклиналь собрала газ в альб-сеноманский рыхлый резервуар (4,5 трлн.м 3), но почти пуста в юре. Залежи же в юрских отложениях выявлены на пологой Северо-Бованенковской антиклинали - остатке от более высокоамплитудной палеоструктуры .

Ямал взят в качестве примера еще и потому, что он является одним из самых ярких случаев такой "инверсии нефтегазоносности" - те антиклинали, которые собирали нефть и газ в середине и конце мела, потом были частично или полностью расформированы, а новые (включающие залежи в сеномане) являются, в основ­ном, новообразованными. Контроль палеоподнятиями представляет лишь один из нескольких видов кон­троля, которые нужно учитывать при расстановке поисковых скважин.

В резервуарах разгрузки содержится 12% прогнозных ресурсов.

Резервуары выщелачивания (30% прогнозных ресурсов), выделен в карбонатных толщах; процесс выщелачивания играет важнейшую роль в увеличении пористости и проницаемости в антиклинальных объектах, прежде всего, приуроченных к органогенным постройкам. Материалы по Западной Сибири, свидетельствуют о широком развитии резервуаров выщелачивания и в полимиктовых песчаных породах, которые тоже пока в большинстве случаев выявляются в антиклинально-литологических ловушках, но в перспективе станут главен­ствующими в некоторых нетрадиционных объектах. Главные черты резервуаров выщелачивания - подавляю­щее распространение порово-трещинных коллекторов и сильно вытянутая (приразломная) форма .

Резервуары нефтегазогенерации (3% ресурсов), пока хорошо изучены только в западной части Западной Сибири, где до современности продолжается (причем с нарастанием) образо­вание автохтонных залежей в баженовских черных сланцах. Резервуары этого типа выделяются не только в самих черных сланцах, но и в смежных песчаниках, поскольку само наличие в них гигантских залежей (например, Талинское месторождение в Красноленинском районе) определяется грандиозными масштабами генерации и эмиграции УВ из черных сланцев. Резервуары как в сланцах, так и смежных песчаниках (выше, ниже и внутри регионального флюидоупора) представляют единую гидродина­мическую систему (в геологическом смысле), и таким же единым механизмом должна стать интерпретация сейсморазведки .

Чрезвычайно важны распределение температур и пластовых давлений и особенности строения регио­нального флюидоупора, то есть то, что обуславливает главные пути миграции УВ. Преобладают трещинно-поровые коллекторы, которые характеризуются сложным пятнистым распределением.

Важнейшее значение для освоения залежей в НР имеет рациональный ком­плекс интенсификации притоков. Ведущее место, благодаря преобладанию трещинных коллекторов, занимает, разумеется, гидроразрыв. За ним следует тепловое воздействие на пласт, которое, в числе прочего, приводит к образованию агрессивных кислот, нередко способствующему перераспределению минеральных цементов и повышению проницаемости. Собственно кислотные обработки дают более сложные результаты, и, например, во многих полимиктовых песчаниках приводят не к повышению, а, напротив, снижению проницаемости.

Нефтегеологическая практика все чаще сталкивается с низкопроницаемыми коллекторами (НК), а, соответственно, с разработкой методов их изучения и технологий повышения их нефтегазоотдачи.

Газы угольных бассейнов. На территории России выделяется 24 угольных бассейна, порядка 20 угленосных площадей и районов, а также множество отдельных угольных месторождений. Большинство из них газоносны. Объемы выделяющего­ся газа при разработке угля в крупных углепромышленных регионах достаточно велики, чтобы, по крайней ме­ре частично покрыть их потребности в газе, Так например, ежегодный ввоз природного газа в Кемеровскую область составляет ~ 1.5 млрд. м 3 , а ежегодное выделение УВ газов при разработке Кузнецкого бассейна - 2,0 млрд. м 3 , в т.ч. 0,17 млрд. м 3 отсасывается дегазационными системами. На каждую тонну добычи угля в России в среднем выделяется 20 м 3 метана . В 2009 г. впервые в России началась промышленная утилизация углеметана в Кемеровской области.

Газоносность углей, по-сути дела метаноносность (по составу газ преимущественно метановый, сухой); в ряде бассейнов достигает 30-40 м 3 /т (Печорский, Кузнецкий и др.). Отличительной особенностью угольного газа является форма его содержания - преимущественно сорбционная в монолитных угольных пластах, и сво­бодная в зонах трещиноватости угольных пластов и во вмещающих породах. Высокие содержания газа в угольных бассейнах, с одной стороны - причина аварий при отработке угля, а с другой - представляют собой существенный резерв газового сырья для промышленности, особенно в энергодефицитных регионах. Много­кратное чередование в разрезе и по площади продуктивных отложений различных форм содержания газа, пре­допределяющих различия в технологиях его добычи - фактор, создающий трудности в освоении угольных га­зов.

Прогнозные ресурсы газа в угольных пластах подсчитанные по 18 угольным бассейнам в пределах глу­бин оценки запасов и ресурсов углей (< 1800 м) и составляют в сумме около 45 трлн. м", при колебаниях от еди­ниц млрд. м 3 (Угловский, Аркагалинский, Кизеловский, Челябинский) до 13-26 трлн. м 3 (Кузнецкий, Тунгус­ский). Оценка ресурсов газов в свободных газовых скоплениях выполнена только по двум бассейнам - Печор­скому и Кузнецкому, и составила в сумме ~ 120 млрд. м 3 . Около 90% всех общих ресурсов приходится на кате­горию Д 2 . Однако по отдельным бассейнам долевое участие ресурсов более высоких категорий может состав­лять 50-70% (Минусинский, Улугхемский, Кизеловский и др.), что связано с превышением запасов углей над ресурсами в этих бассейнах. Наиболее богатыми регионами России по ресурсам угольных газов являются Вос­точная и Западная Сибирь ~ 58 и 29%, соответственно, от общего объема ресурсов, в то время как в Европей­ской части сосредоточено не более 4% .

Угольные газы по своим качественным и количественным характеристикам ничем не ус­тупают УВ газам традиционных месторождений.

В настоящее время в более чем 3 тысячах угольных шахтах мира выделяется около 40 млрд. м 3 метана в год, из которых в 500 шахтах каптируется около 5.5 млрд. м 3 /год, а утилизируется - 2.3 млрд.м 3 . Мировой опыт утилизации угольного газа свидетельствует о перспективности и экономической целесообразности вовле­чения его в местный топливный баланс. В 12 странах мира каптируемый газ рассматривают как попутное по­лезное ископаемое, а в отдельных странах - как самостоятельное (США). В первом случае себестоимость его разработки не превышает себестоимости добычи традиционного газа, во втором - несколько выше (в 1.3-1.5 раз).

В России метан из угленосных толщ извлекается в объеме 1.2 млрд. м 3 /год различными системами дега­зации на полях 132 действующих шахт. Утилизируется он в двух бассейнах - Печорском и Кузнецком в коли­честве 100-150- млн. м 3 /год. Разработаны технологии, позволяющие рентабельно извлекать и выгодно исполь­зовать газ из угленосных толщ.

Наиболее перспективными для разработки газа являются Печорский и Кузнецкий каменноугольные бассейны, где для этого уже выполнено технико-экономическое обоснование и есть положительный опыт добычи газа. Кроме того, попутная добыча газа воз­можна в ряде дальневосточных бассейнов - Партизанском, Угловском, Сахалинском. Тун­гусский и Ленский бассейны представляют собой крупные резервы газового сырья в будущем .

В целом нетрадиционные ресурсы УВ представляют резерв возможностей расширения сырьевой базы нефти и газа в России, особенно для провинций с истощенными запасами, но они нуждаются в целенаправлен­ных исследованиях и, главное, в разработке новых принципов теории и практики, как их выявления, так и раз­ведки и добычи .